
Unit – 2 Basics of JAVA

T.Y.B.Sc. Sem – V Subject – JAVA Programming I

2.1 Variables, Data Types, Casting, Operators

2.2 Compiling and running Java program

2.3 Command line arguments

2.4 Accepting input from console

2.5Arrays

Prof. A. P. Chaudhari (M.Sc., SET)
HOD, Department of Computer Science

SVS’s Dadasaheb Rawal College, Dondaicha

2.1) – a) Variables:

A variable is a container which holds the value while the Java

program is executed. A variable is assigned with a data type.

Variable is name of reserved area allocated in memory. In other

words, it is a name of memory location. Variable name can be chosen by the

programmer in a meaningful way so as reflect what it represents in the

program.

It is a combination of "vary + able" that means its value can be

changed. It may take different value at different times during the execution of

the program.

In Java, there are different types of variables, for example:

String - stores text, such as "Hello". String values are surrounded by double

quotes

int - stores integers (whole numbers), without decimals, such as 123 or -123

float - stores floating point numbers, with decimals, such as 19.99 or -19.99
2

char - stores single characters, such as 'a' or 'B'. Char values are

surrounded by single quotes

boolean - stores values with two states: true or false

Declaring Variable:

To create a variable, you must specify the type and assign it a value:

Syntax:

data_type variable_name = value;

Where data_type is one of Java's data types and variable_name is the name

of the variable. The equal sign is used to assign values to the variable.

e.g.: string name = “Atharv”;

int rollno = 101;

float per = 92.67;

3

2.1) – a) Variables:

2.1) – b) Data Types

The type of value that a variable can hold is called data type.

Every variable in Java has a data type. Based on the data type of a

variable, the operating system allocates memory and decides what can be

stored in the reserved memory. Data types specify the different sizes and

values that can be stored in the variable.

There are two types of data types in Java:

1) Primitive data types: The primitive data types include boolean, char,

byte, short, int, long, float and double.

2) Non-primitive data types: The non-primitive data types

include Classes, Interfaces and Arrays.

4

2.1) – b) Data Types

5

2.1) – b) Data Types

6

Primitive data types: There are eight primitive data types supported by

Java. Primitive data types are predefined by the language and named by a

keyword. These are the most basic data types available in Java language.

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7

decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal

digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

2.1) – c) Casting

7

It is a process of converting from one data type to another data

type. Casting of data types in Java is also known as type casting in Java.

There are two types of casting-

i) Implicit Casting

ii) Explicit Casting

i) Implicit Casting (Widening)

In case of implicit casting, source is smaller than destination and

no need to do casting, JVM (Java Virtual Machine) will do required

casting.

byte short int long float double

e.g. float a;

int b;

a = b;

2.1) – c) Casting

8

ii) Explicit Casting (Narrowing)

In case of explicit casting, destination is smaller than source, we

need to do casting explicitly. JVM (Java Virtual Machine) will not do

any casting.

double float long int short byte

Syntax: data_type variable1 = (data_type) variable2;

e.g. float a;

int b = (int) a;

2.1) – d) Operators

9

Operator in Java is a symbol which is used to perform operations on

variables and values. It takes one or more arguments and operates on

them to produce a result. The constants, variables or expression on which

operator operates are called as operands. e.g. 6 + 8 here + is the operator

and 6 and 8 are operands.

There are many types of operators in Java which are given below:

Operator Type Category Precedence

Unary postfix expr++ expr--

prefix ++expr --expr +expr -expr ~ !

Arithmetic multiplicative * / %

additive + -

Shift shift << >> >>>

Relational comparison < > <= >= instanceof

equality == !=

2.1) – d) Operators

10

Operator Type Category Precedence

Bitwise bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

Logical logical AND &&

logical OR ||

Ternary ternary ? :

Assignment assignment = += -= *= /= %= &= ^=

|= <<= >>= >>>=

Special

Operator

Instanceof Operator

Member Selection Operator

2.1) – d) Operators

11

1) Unary Operator: The Java unary operators require only one operand.

Unary operators are used to perform various operations i.e.:

• incrementing/decrementing a value by one

• inverting the value of a boolean

e.g: int x=10;

System.out.println(x++); //10 (11)

System.out.println(++x); //12

System.out.println(x--); //12 (11)

System.out.println(--x); //10

boolean c=true;

boolean d=false;

System.out.println(!c); //false (opposite of boolean value)

System.out.println(!d); //true

2.1) – d) Operators

12

2) Arithmetic Operator: Java arithmetic operators are used to perform

addition, subtraction, multiplication, and division. They act as basic

mathematical operations.

e.g: int a=25;

int b=4;

System.out.println(a + b); //29

System.out.println(a - b); //21

System.out.println(a * b); //100

System.out.println(a / b); //6

System.out.println(a % b); //1 (% - Modulo Operator)

2.1) – d) Operators

13

3) Shift Operator: Shift operator works on bits and performs bit-by-bit

operation. Assume if a = 60; now in binary format they will be as follows −

a = 0011 1100

<<

(left shift)

Binary Left Shift Operator. The

left operands value is moved left

by the number of bits specified

by the right operand.

A << 2

will give 240 which is

1111 0000

>>

(right shift)

Binary Right Shift Operator. The

left operands value is moved

right by the number of bits

specified by the right operand.

A >> 2

will give 15 which is

1111

>>>

(zero fill right

shift)

Shift right zero fill operator. The

left operands value is moved

right by the number of bits

specified by the right operand

and shifted values are filled up

with zeros.

A >>>2

will give 15 which is

0000 1111

2.1) – d) Operators

14

4) Bitwise Operator: Java defines several bitwise operators, which can be

applied to the integer types- long, int, short, char, and byte. Bitwise

operator works on bits and performs bit-by-bit operation.

Assume if a = 60 and b = 13; now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

& (bitwise and)

Binary AND Operator copies a

bit to the result if it exists in both

operands.

(A & B)

will give 12 which is

0000 1100

| (bitwise or)
Binary OR Operator copies a bit

if it exists in either operand.

(A | B)

will give 61 which is

0011 1101

^ (bitwise XOR)

Binary XOR Operator copies the

bit if it is set in one operand but

not both.

(A ^ B)

will give 49 which is

0011 0001

2.1) – d) Operators

15

5) Relational Operator: There are following relational operators supported

by Java language. Assume variable A = 10 and variable B = 20, then −

Operator Description Example

==

(equal to)

Checks if the values of two operands are equal or not,

if yes then condition becomes true.
(A == B) is not

true.

!=

(not equal to)

Checks if the values of two operands are equal or not,

if values are not equal then condition becomes true.
(A != B) is true.

>

(greater than)

Checks if the value of left operand is greater than the

value of right operand, if yes then condition becomes

true.

(A > B) is not

true.

<

(less than)

Checks if the value of left operand is less than the

value of right operand, if yes then condition becomes

true.
(A < B) is true.

>=

(greater than

or equal to)

Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then

condition becomes true.

(A >= B) is not

true.

<=

(less than or

equal to)

Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.
(A <= B) is true.

2.1) – d) Operators

16

6) Logical Operator: The following table lists the logical operators −

Assume Boolean variables A holds true and variable B holds false, then -

Operator Description Example

&&

(logical and)

Called Logical AND operator. If both the

operands are non-zero, then the

condition becomes true.

(A && B) is

false

||

(logical or)

Called Logical OR Operator. If any one

of the two operands are non-zero, then

the condition becomes true.
(A || B) is true

!

(logical not)

Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true then Logical NOT

operator will make false.

!(A && B) is

true

2.1) – d) Operators

17

7) Ternary Operator: Ternary operator is also known as the Conditional

operator. Java Ternary operator is used as one liner replacement for if-

then-else statement and used a lot in Java programming. This operator

consists of three operands and is used to evaluate Boolean expressions.

The goal of the operator is to decide, which value should be assigned to

the variable. The operator is written as −

variable x = (expression) ? value if true : value if false

e.g: int a=2;

int b=5;

int min = (a < b) ? a : b;

System.out.println(min);

2.1) – d) Operators

18

8) Assignment Operator: Following are the assignment operators supported

by Java language −

Operator Description Example

=
Simple assignment operator. Assigns values from

right side operands to left side operand.
C = A + B will assign

value of A + B into C

+=

Add AND assignment operator. It adds right

operand to the left operand and assign the result

to left operand.

C += A

is equivalent to

C = C + A

-=

Subtract AND assignment operator. It subtracts

right operand from the left operand and assign

the result to left operand.

C -= A

is equivalent to

C = C – A

*=

Multiply AND assignment operator. It multiplies

right operand with the left operand and assign the

result to left operand.

C *= A

is equivalent to

C = C * A

/= Divide AND assignment operator. It divides left

operand with the right operand and assign the

result to left operand.

C /= A

is equivalent to

C = C / A

2.1) – d) Operators

19

8) Assignment Operator: Following are the assignment operators supported

by Java language −

Operator Description Example

%=

Modulus AND assignment operator. It

takes modulus using two operands

and assign the result to left operand.

C %= A

is equivalent to

C = C % A

<<= Left shift AND assignment operator.
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator.
C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator.
C &= 2 is same as

C = C & 2

^=
bitwise exclusive OR and assignment

operator.
C ^= 2 is same as

C = C ^ 2

|=
bitwise inclusive OR and assignment

operator.
C |= 2 is same as

C = C | 2

20

9) Special Operators:

Java supports special operators such as instance of operator and

member selection operator (Dot operator).

a) Instanceof Operator:

The instanceof operator compares an object to a specified type. It

is used to test whether the object is an instance of the specified type

(class, subclass or interface). This is also known as comparison operator it

compares the instance with type. It returns either true or false. If we apply

the instanceof operator with any variable that have null value, it returns

false.

e.g.: String name = “Vivekanand”;

Boolean result = name instanceof String;

2.1) – d) Operators

21

b) Member Selection (Dot) Operator:

The dot operator is used to access class members. i.e. Instance

variable and methods of class object.

e.g.:

s1.roll_no;

s1.putdata();

It is also used to access classes and sub packages from a package.

2.1) – d) Operators

2.2 Compiling and running Java program

22

Before compiling the program, user first has to write Java program

using any text editor called source file. Save the file with .java extension.

Now, compile the source file using the compiler ‘javac’ with the name of

source file as below –

javac filename.java

The Java compiler translates the source file into instructions that the

Java Virtual Machine can understand. The instructions contained within this

file are known as byte code. After compilation it creates the .class file.

To run the Java program we need to use Java interpreter ‘java’ at

the command prompt. We type as following:

java filename

The interpreter starts the execution from the main method in the program.

23

Step – I) Open command prompt

Step – II) Write command as follows:

Microsoft Windows [Version 6.1.7600]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Vivekanand>cd..

C:\Users>cd..

C:\>cd jdk1.4

C:\jdk1.4>cd bin

C:\jdk1.4\bin>edit

2.2 Compiling and running Java program

24

Step – III) Write program in editor (Source Program)

import java.io.*;

class demo33

{

public static void main(String args[])

{

System.out.println("Atharv");

System.out.println("Dondaicha");

}

}

Step – IV) Compile source code by following command-

C:\jdk1.4\bin>javac demo33.java

Step – V) Run program by following command-

C:\jdk1.4\bin>java demo33

Output -

Atharv

Dondaicha

2.2 Compiling and running Java program

2.3 Command Line Arguments

25

Command line arguments are the parameters that are passed

through the command prompt at the time of execution of program. By

default every command line argument will be treated as String value and

those are stored in a String array of main () method.

public static void main (String args[])

Here, args[] is declared as an array of string. Any arguments

supplied in the command line at the time of execution are passed to the

array args[] as its element. We can simply access the array elements and

use them in a program.

Syntax:

java filename value1, value2, ……. Value_n

Command line arguments

26

Program – 1

import java.io.*;

class demo34

{

public static void main(String args[])

{

System.out.println("Number of arguments are:"+args.length);

for(int i=0; i<args.length; i++)

{

System.out.println(args[i]);

}

}

}

Compile: javac demo34.java

Run: java demo34 C C++ Java VB

Output: Number of arguments are:4

C

C++

Java

VB

2.3 Command Line Arguments

27

Program – 2

import java.io.*;

class add

{

public static void main(String args[])

{

int a, b, c;

a = Integer.parseInt(args[0]);

b = Integer.parseInt(args[1]);

c = a + b;

System.out.println("Adition is: "+c);

}

}

Compile: javac add.java

Run: java add 25 15

Output: Addition is: 40

2.3 Command Line Arguments

28

Program – 3

import java.io.*;

class student

{

public static void main(String args[])

{

int a;

String b,c;

float d;

a = Integer.parseInt(args[0]);

b = args[1];

c = args[2];

d = Float.parseFloat(args[3]);

System.out.println("Roll No:"+a);

System.out.println("Name:"+b);

System.out.println("Class:"+c);

System.out.println("Percentage:"+d);

}

}

Compile: javac student.java

Run: java student 101 Atharv

TYBSc 92.67

Output: Roll No: 101

Name: Atharv

Class: TYBSc

Percentage: 92.67

2.3 Command Line Arguments

2.4 Accepting input from console

29

Java DataInputStream class allows an application to read

primitive data from the input stream in a machine-independent way.

Program – 1

import java.io.*;

class demo35

{

public static void main(String args[])throws IOException

{

String sname;

DataInputStream d = new DataInputStream(System.in);

System.out.println("Enter your name:");

sname = d.readLine();

System.out.println("Your Name:"+sname);

}

}

Compile: javac demo35.java

Run: java demo35

Output: Enter your name: Vivekanand

Your Name: Vivekanand

30

Program – 2

import java.io.*;

class stud1

{

public static void main(String args[])throws IOException

{

int rno;

String sname;

float per;

DataInputStream d = new DataInputStream(System.in);

System.out.println("Enter Roll Number:");

rno = Integer.parseInt(d.readLine());

System.out.println("Enter Name:");

sname = d.readLine();

System.out.println("Enter Percentage:");

per = Float.parseFloat(d.readLine());

System.out.println("Roll No:"+rno);

System.out.println("Name:"+sname);

System.out.println("Percentage:"+per);

}

}

Compile: javac stud1.java

Run: java stud1

Output: Enter Roll Number: 101

Enter Name: ABC

Enter Percentage: 88.96

Roll No: 101

Name: ABC

Percentage: 88.96

2.4 Accepting input from console

31

The Scanner class is used to get user input, and it is found in the

java.util package. To use the Scanner class, create an object of the class

and use any of the available methods found in the Scanner class

documentation. In our example, we will use the nextLine() method, which is

used to read Strings:

Program – 3

import java.util.*;

class demo37

{

public static void main(String args[])

{

String name;

Scanner in = new Scanner(System.in);

System.out.print("Enter your name: ");

name = in.nextLine();

System.out.println("Name is: " + name);

in.close();

}

}

2.4 Accepting input from console

Compile: javac demo37.java

Run: java demo37

Output: Enter your name: MNO

Name is: MNO

2.5 Arrays

32

An array is collection of continuous similar item that share the

common name. Array is a container object that holds value of

homogeneous type. This means that all elements in the array have the

same data type. A position in an array is indicated by a non negative

integer value called as index. An element at the given position is accessed

by using this index. The size of array is fixed and cannot increase to

accommodate more elements.

0 1 2 3 4 5 6 Index

Types of Array:

1) One dimensional array

2) Two dimensional array

33

1) One Dimensional Array

Array which requires only one index/subscript to refer its elements

is called as one dimensional array.

Syntax: data_type array_name [] = new data_type[size];

e.g.: int marks [] = new int [10];

Initializing Array:

An element of an array must be given a value before it is used.

With Java compilers all variables including array elements are given default

initial values. All number elements are initialized to 0. We can obtain the

length of array using array_name.length

e.g.: marks[0]=86;

We can also initialize arrays automatically in the same way as the

ordinary variables when they are declared as below:

data_type array_name [] = {list_of_values};

e.g.: int marks [] = {70,86,93,48,66};

2.5 Arrays

34

Program 1

import java.io.*;

class demo38

{

public static void main(String args[])

{

int marks[]={70,86,93,48,66};

System.out.println("Number of elements in array are:“ +marks.length);

System.out.println("Elements in array marks:");

for(int i=0; i<marks.length; i++)

{

System.out.println(marks[i]);

}

}

}

Output:

Number of elements in array are:5

Elements in array marks:
70 86 93 48 66

2.5 Arrays

35

2) Two Dimensional Array (Multi-dimensional Array)

Array which requires two index/subscripts to refer its element is

called as two dimensional array. Many times it is required to manipulate the

data in table format or in matrix format which contains row and columns. In

these cases, we have to use two dimensional array.

Syntax: data_type array_name [] [] = new data_type [row] [column];

OR

data_type [] [] array_name = new data_type [row] [column];

e.g. int mat [] [] = new int [3] [4];

This will create total 12 storage locations for two dimensional

arrays. We can store the values in each of these memory locations by

referring their respective row and column number as follows:

mat [2] [3] = 25;

2.5 Arrays

36

Like one dimension arrays, two dimensional array can also be

initialize at compile time as follows:

int mat [2] [2] = {4,7,3,9};

We can also initialization done row by row as follows:

int mat [2] [2] = { {4,2}, {3,9} };

2.5 Arrays

37

Program 1

import java.io.*;

class demo39

{

public static void main(String args[])

{

int mat [][] = {{1,2,3}, {4,5,6}, {7,8,9}};

System.out.println("The given matrix is:");

for(int i=0; i<3; i++)

{

for(int j=0; j<3; j++)

{

System.out.print(mat[i][j]+"\t");

}

System.out.println();

}

}

}

Output:
The given matrix is:
1 2 3
4 5 6
7 8 9

2.5 Arrays

